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ABSTRACT: The data suggests that Na2 eosin Y-derived photoinduced states act as a HAT catalyst for the synthesis of 3,4-
dihydropyrimidin-2-(1H)-ones/thiones in ethanol at room temperature. This research establishes a novel function for using a
nonmetallic natural dye, Na2 eosin Y, available commercially and at a cheap cost in the photochemical synthesis using the least
amount of catalyst, obtaining good results, speeding up the process, and achieving a high atom economy. The TON and TOF of 3,4-
dihydropyrimidin-2-(1H)-ones/thiones are computed. Furthermore, this cycle runs on the gram scale as well, indicating the
possibility of industrial purposes.

■ INTRODUCTION
EY is a readily available nonmetallic natural dye that has recently
found widespread use due to its economic and ecological
advantages over transition photocatalysts based on metals.1

In photoredox reactions catalyzed by eosin Y, target substrates
reduced or oxidized successfully by their driven manner are
based on typically the reducibility or potential oxidability of the
substrates within the eosin Y scope (Scheme 1).1a

The spectrum of photochemical processes induced by eosin Y
has been constrained by the aforementioned electrochemical
requirements. Unlike other organic dyes, eosin Y possesses
unique phenol and xanthene moieties and is quite different from
other organic dyes. It also has prominent features with an acid
basis leading to four different constructs. Ample documentation
exists from former reports on photoreactions indicating the
photocatalytic property of anionic eosin Y. However, neutral
eosin Y has characteristic inactivity, which can be ignored in
synthesis processes applied potentially.2 Recently, Wang3 and
Wu4 were motivated by the properties of eosin Y to pioneer the
identification of new activation states for photoinduced eosin Y.
They revealed that eosin Y-derived driven modes could act as
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Scheme 1. Eosin Y’s Oxidative and Reductive Quenching
Cycles and Their Associated Potentials1a
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HAT catalysts or photoacids to activate native C−H bonds and
glycals (Scheme 2).1a

HAT is a simple phase probably in charge of multiple
chemical, environmental, and biological procedures. Partic-
ularly, direct HAT catalysis mediated by quinine and
benzophenone has recently been used as a tool for enabling
activation of C−H bonds under the radiation of light.5,6

Moreover, green chemists consider visible light irradiation as a
reliable method since it has plentiful energy reserves and lower
cost and as a renewable energy source in the environment-
friendly synthesis of organic compounds.7−9 Normally, compact
fluorescent lights and diodes emitting light are visible light
sources for different transformations.
We describe dihydropyrimidines with a variety of pharmaco-

logical properties (Figure 1).10−16

Numerous strategies are available.17−36 Numerous instances
occurred from these treatments. However, certain synthesis

routes have drawbacks, such as limitations on the use of metal
catalysts, severe reaction conditions, costly reagents, repetitive
workup, low yield, prolonged reaction time, and environmental
hazards.
Due to the aforementioned challenges and our concern for

ecologically benign procedures, most scientists have been
intrigued by the quest for easy, efficient, and environmentally
safe methods that may enhance organic reactions under green
conditions. Considering the above concerns, it is critical to
investigate environmentally safe catalysts under green con-
ditions for the correct synthesis of nitrogen heterocyclic
complexes. This research establishes a novel function for the
utilization of a nonmetallic dye, Na2 eosin Y, in the
aforementioned photochemical synthesis process. The Biginelli
reactivity37 involving β-ketoesters, arylaldehyde derivatives, and
urea/thiourea in ethanol at room temperature and in an air
environment is facilitated by visible light. This is a successful
one-pot reaction carried out under very efficient, moderate, and
simple conditions.

Scheme 2. Exploring EY as a HAT Catalyst/Photoacid1a

Figure 1. Structures containing dihydropyrimidines with biological
activities.

Figure 2. Photocatalysts tested in this study.
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■ RESULTS AND DISCUSSION

To begin with, Table 1 summarizes the findings of an
investigation into the reactivity of benzaldehyde (1.0 mmol),

urea (1.5 mmol), and ethyl acetoacetate (1.0 mmol) in EtOH (3

mL) enhanced by irradiation at ambient temperature. With no

photocatalyst, a trace quantity of 4a was detected at room

Table 1. Optimization Table of Photocatalysts for the Synthesis of 4aa

entry photocatalyst solvent (3 mL) time (min) yields (%)b

1 EtOH 60 trace
2 Na2 eosin Y (0.2 mol %) EtOH 20 78
3 Na2eosin Y (0.5 mol %) EtOH 10 94
4 Na2 eosin Y (1 mol %) EtOH 10 94
5 rhodamine B (0.5 mol %) EtOH 10 67
6 9H-xanthen-9-one (0.5 mol %) EtOH 10 61
7 fluorescein (0.5 mol %) EtOH 10 75
8 acenaphthenequinone (0.5 mol %) EtOH 10 69
9 erythrosin B (0.5 mol %) EtOH 10 58
10 riboflavin (0.5 mol %) EtOH 10 72
11 Alizarin (0.5 mol %) EtOH 10 45
12 xanthene (0.5 mol %) EtOH 10 41
13 rose bengal (0.5 mol %) EtOH 10 74
14 phenanthrenequinone (0.5 mol %) EtOH 10 52

aReaction conditions: benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), urea (1.5 mmol) in EtOH (3 mL), white LED (18 W), and
various photocatalysts at rt. bIsolated yield.

Table 2. Optimization Table of Solvent and Visible Light for the Synthesis of 4aa

entry light source solvent (3 mL) time (min) yields (%)b

1 white light (18 W) H2O 10 65
2 white light (18 W) 20 73
3 white light (18 W) EtOH 10 94
4 white light (18 W) MeOH 10 69
5 white light (18 W) EtOAc 10 61
6 white light (18 W) H2O/EtOH (1:1) 10 77
7 white light (18 W) H2O/EtOH (1:2) 10 82
8 white light (18 W) H2O/EtOH (2:1) 10 74
9 white light (18 W) DMSO 25 38
10 white light (18 W) CH3CN 20 56
11 white light (18 W) CHCl3 40 19
12 white light (18 W) CH2Cl2 40 15
13 white light (18 W) DMF 35 26
14 white light (18 W) THF 25 23
15 white light (18 W) toluene 25 42
16 white light (10 W) EtOH 10 75
17 white light (12 W) EtOH 10 82
18 white light (20 W) EtOH 10 94
19 EtOH 45 <5
20 green light (18 W) EtOH 10 88
21 blue light (18 W) EtOH 10 81

aReaction conditions: benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), urea (1.5 mmol), and Na2 eosin Y (0.5 mol %) at rt. bIsolated
yield.
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temperature for 60 min in 3 mL of EtOH (Table 1, entry 1). To
promote the reaction, various organic photocatalysts (Figure 2)
were examined in similar scenarios. Acceptably, the evolution of

this reaction was observed in 41−94% yields (Table 1) while
obtaining the matching product 4a. As per our results, Na2 eosin
Y performed better than other eosins in this process. By adding

Table 3. Photoexcited Na2 Eosin Y as a Photocatalyst for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones/thiones
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0.5 mol % Na2 eosin Y, the yield was improved to 94% (Table 1,
entry 3). Additionally, a poor product yield was observed in
dimethyl sulfoxide (DMSO), CH3CN, CHCl3, CH2Cl2,
dimethylformamide (DMF), tetrahydrofuran (THF), and
toluene (Table 2). As the reaction progressed slowly in H2O,

no solvent, EtOH, MeOH, EtOAc, and H2O/EtOH, the yield
and rate of the reaction increased (Table 2). The reaction
proceeded extremely well in EtOH, yielding 94% under similar
circumstances (Table 2, entry 3). The yield was tested using a
variety of illuminations, showing that it increased somewhat in

Scheme 3. Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones/thiones

Scheme 4. Proposed Mechanistic Route
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response to white light (Table 2, entry 3). Based on the test
control, there was a minuscule of 4a without utilizing the light
source. Moreover, the enhanced settings were defined by
irradiation of various intensities of a white light-emitting diode
(LED). As seen in Table 2, the best results were obtained when
white 18 W LED irradiation was used. It was revealed that this
method can work with different substrates (Table 3, Scheme 3).
Table 4 incorporates information on TON and TOF. The

lesser amount of catalyst used, the greater the yield, the higher
the TON and TOF numerical values, and as the esteem
increments, the catalyst will get more successful.
The fourth scheme denotes the preferred mechanism. As

previously observed,1a,d,4 photoexcited modes originating from
Na2 eosin Y can act as direct HAT catalysts. Regeneration of the
ground-state Na2 eosin Y and the intermediateA occurs through
a reverse HAT reaction between eosin Na2 Y−H and
arylaldehydes 1. Nucleophilic addition of this radical anion A
to urea/thiourea 2 results in the formation of a reactive iminium
intermediate B. The cation radical D is generated through a
HAT process by promoting visible light-triggered Na2 eosin Y*.
To obtain the cyclized dehydrated 4, the cation radicalD attacks
the iminium intermediate B (Scheme 4).
Table 5 presents the comparison between the catalytic

capacity of some catalysts in this work for generating 3,4-
dihydropyrimidin-2-(1H)-ones/thiones. Na2 eosin Y may have
various advantages including the utilization of a small quantity of
photocatalyst, a fast reaction time, and the absence of
byproducts when visible light irradiation is used. The atom-
economic protocol is very successful at multigram scales and has
significant industrial implications. These materials excel in terms
of both efficiency and purity.

■ CONCLUSIONS

In conclusion, the Na2 eosin Y-derived photoinduced states act
as a HAT catalyst for photochemically synthesizing 3,4-
dihydropyrimidin-2-(1H)-ones/thiones through the three-con-
densation domino Biginelli response of β-ketoesters, arylalde-
hydes, and urea/thiourea in ethanol at room temperature. This
research establishes a novel function for using a nonmetallic
natural dye, Na2 eosin Y, available commercially and at a cheap
cost in the photochemical synthesis using the least amount of
catalyst, obtaining good results, speeding up the process, and
achieving a high atom economy. This is a successful one-pot
reaction carried out under very efficient, moderate, and simple
conditions.

■ EXPERIMENTAL SECTION
General. The physical properties and infrared spectra of all

substances were measured using an Electrothermal 9100
apparatus and a JASCO FTIR 460 Plus spectrometer,
respectively. Additionally, the spectra (1H NMR and 13C
NMR) were recorded with nuclear magnetic resonance on a
Bruker (DRX-400, DRX-300, and DRX-100) apparatus using
DMSO-d6 as the solvent. Themass spectra were acquired using a
spectrometer from Agilent Technology (HP) operating at a 70
eV ionization potential. The elements (carbon, hydrogen, and
nitrogen) were investigated using a Heraeus CHN-O-Rapid
analyzer. We purchased the reagents from chemical firms Fluka,
Merck, and Acros and utilized them with no further treatment.

General Procedure. Under white LED (18 W) irradiation, a
combination of arylaldehyde derivatives (1, 1.0 mmol), urea/
thiourea (2, 1.5 mmol), and ethyl/methyl acetoacetate (3, 1.0
mmol) in EtOH (3 mL) was added to Na2 eosin Y (0.5 mol %)
(Scheme 3) and stirred at ambient temperature. TLC was used
to monitor the reaction’s progress, using n-hexane/ethyl acetate
(3:2) as the eluent. After completion of the reaction, the
obtained material was screened and washed with water, and the
crude solid was crystallized again from ethanol to obtain the pure
substance with no further purification. After comparing
spectroscopic data, the goods were categorized.
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Table 4. Calculated Values of Turnover Number (TON) and
Turnover Frequency (TOF)

entry product TON TOF entry product TON TOF

1 4a 188 18.8 12 4l 186 18.6
2 4b 182 18.2 13 4m 172 8.6
3 4c 192 19.2 14 4n 190 19
4 4d 178 8.9 15 4o 178 11.8
5 4e 170 8.5 16 4p 176 11.7
6 4f 172 11.4 17 4q 184 12.2
7 4g 188 18.8 18 4r 174 11.6
8 4h 178 11.8 19 4s 182 18.2
9 4i 182 12.1 20 4t 172 8.6
10 4j 170 8.5 21 4u 180 12
11 4k 176 8.8 22 4v 174 11.6

Table 5. Comparison between the Catalytic Capacity of Some
Catalysts Presented in This Worka

entry catalyst conditions time/yield (%)refs

1 baker’s yeast room temperature 1440 min/8419

2 hydrotalcite solvent-free, 80 °C 35 min/8420

3 [Al(H2O)6](BF4)3 MeCN, Reflux 1200 min/8121

4 Cu(BF4)2.xH2O room temperature 30 min/9023

5 [Btto][p-TSA] solvent-free, 90 °C 30 min/9624

6 triethylammonium
acetate

solvent-free,70 °C 45 min/9025

7 saccharin solvent-free, 80 °C 15 min/8826

8 caffeine solvent-free, 80 °C 25 min/9127

9 Na2 eosin Y visible light irradiation,
EtOH, rt

10 min/94this work

aBased on the three-component reaction of benzaldehyde, ethyl
acetoacetate, and urea.
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